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Making multi-modal segmentation more useful (b) M3L

The proposed M3L (Multi-modal teacher for Masked Modality Learning) semi-supervised framework
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low-label regime and improve segmentation performance
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by taking a weighted average. This simple algorithm
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*CPS-Seg is Segformer architecture trained with CPS framework
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[2] Semi-Supervised Semantic Segmentation With Cross
Pseudo Supervision, Chen et al., CVPR 2021
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Stanford Indoor Dataset (number of labeled points)




