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ABSTRACT
Fashion recommendation has witnessed a phenomenal growth of
research, particularly in the domains of shop-the-look, context-
aware outfit creation, personalizing outfit creation etc. Majority
of the work in this area focuses on better understanding of the
notion of complimentary relationship between lifestyle items. Quite
recently, some works have realised that style plays a vital role in
fashion, especially in the understanding of compatibility learning
and outfit creation. In this paper, we would like to present the end-
to-end design of a methodology in which we aim to generate outfits
guided by styles or themes using a novel style encoder network.
We present an extensive analysis of different aspects of our method
through various experiments. We also provide a demonstration api
to showcase the ability of our work in generating outfits based on
an anchor item and styles.

CCS CONCEPTS
• Computing methodologies → Learning latent representa-
tions; Neural networks.
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1 INTRODUCTION
Outfit recommendation is a relatively well studied area in which
researchers aim to recommend outfits based on the notion of com-
patibility between lifestyle items, see [11, 17–19] for more details. A
substantial volume of work has also been done on the specific area
of personalised recommendations [13, 20]. However, none of them
specifically take style into account while learning compatibility
within outfits. We realise that style is an essential component in
∗First three authors contributed equally to this research.
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Figure 1: Illustration of the effectiveness of style-guided out-
fit generation over a style-independent variant. If formal is
the dominant style, the latter will only accept outfits from
formal style while rejecting from others. Style-guidedmeth-
ods, however, will accept outfits from multiple styles.

modelling outfit compatibility as an outfit may look compatible
under one style construct but not in another.

An example of style guided outfit creation is provided in Figure 1.
The same top item (highlighted by a dotted rectangle) is used to
create two outfits under two different styles, namely Formal and
Casual. This is useful in the situation where we consider that a user
likes the top item but is doubtful about making the final purchase.
A style-guided algorithm will have two advantages: (a) it will reject
an outfit which may be otherwise compatible but not in accordance
with the desired style, and (b) it will pick compatible outfits from
different styles, hence expanding the choice to the user. A style-
independent algorithm, on the other hand, gets biased towards the
dominant style (assuming formal style is dominant).

Style guided recommender system requires special attention
from the research community as most of the work are unsuper-
vised in nature. Some example research in this area are listed below:
(a). Kuhn et al. [7] refer an outfit as a style fit and do not explic-
itly use style information for modeling compatibility; (b). Jeon et
al. [5] extract fashion attributes from full-body outfit images for
classifying outfit style; (c). Li et al. [10] models outfit level style
from item descriptions; (d). Singhal et al. [16] models context and
type jointly using Graph Neural Network (GNN), and style between
item pairs are modeled using autoencoder without any explicit style
information. Each of these works lack in one way or the other the
ability to generate style guided outfits.

Lai et al. proposed the Theme Matters paper [8] (archived work)
which comes closest to our work. It projects a supervised approach
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that applies theme-aware attention to item pairs with fine-grained
category tags (e.g., long-skirt, mini-skirt, t-shirt, etc.). There are
two specific drawbacks, the first of which is that such fine-grained
category information is not always available and can be ambigu-
ous if done manually. Secondly, the size of the model increases
exponentially with the number of fine-grained categories.

We propose a Style-Attention-basedCompatibleOutfitGen-
eration (SATCOGen) framework that uses high-level categories
(e.g., topwear, bottomwear, footwear, accessory, etc.) and outfit-level
style information. It consists of a Style-Compatibility-Attention
Network (SCA Net) [12] and a novel style encoder network called
Variational Style Encoder Network (VSEN) which encodes the style
of an outfit into a latent space. This encoding is used to provide
style-specific subspace attention, along with category information
during the computation of embedding. Multiple loss functions en-
sure style encoding, general as well as style-specific compatibility.
For the generation task, given an anchor item, beam search is used
to generate style-specific outfit. We have provided a demonstration
api to showcase the kind of outfits that are generated for an anchor
item given various styles.

2 METHODOLOGY
The fundamental philosophy guiding the work in this paper is that
in practical circumstances compatibility between lifestyle items
present within an outfit is contingent on the style to which the
outfit belongs. In a nutshell, we make use of Style-Compatibility-
Attention Network (SCA Net), a compatibility learning framework
that makes use of features extracted from the image of an item based
on category information as previously done by [12] and then add
style component to it. The methodology of SATCOGen is explained
in greater detail below.

A smooth latent vector representation for outfit style is learnt
using Variational inference in a novel style encoder named Varia-
tional Style Encoder Network (VSEN). There are two main trends
in denoting an outfit, as an ordered sequence of items [4, 15] or
as set [1, 3]. We choose the latter representation, which brings in
two important properties, namely permutation invariance and al-
lowance for varying length. This assumption enables us to select
the set transformer approach proposed in [9] for our style encoder
job. Keeping in mind that our work is not restricted only to com-
patibility learning and also involves outfit generation, we ensure
that every outfit style is represented by the first two moments of
a Gaussian distribution which is proximal to the unit Gaussian
N(0,1), a mechanism we borrowed from Variational inference [2].
This further ensures smooth representation of the latent style space.
The advantage of this step will be clear during the outfit generation
stage.

A vector, sampled from the Gaussian distribution representing
the style of the outfit is used to classify the style of the outfit.
This ensures that VSEN is able to capture specific information
about the style of the outfit as well. Thus, given the styles and
their corresponding style vectors, this module solves a multi-class
classification problem using an MLP with n layers.

We modify the subspace attention network proposed in [12] to
learn compatibility between items in an outfit. In the previous net-
work, the image of an item within an outfit is passed through

...
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casual shoes, 
sunglasses ) 
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casual
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Figure 2: Beam search: Given a top-wear chosen by a user,
and a template, the algorithm would go about generating
outfits by sequentially adding items from each category in
the template.

a ResNet18, and the embedding vector output is multiplied by
learnt masks that help to learn the subspaces. The item and target
categories are then consumed to estimate the subspace attention
weights which subsequently leads to a weighted average of the
masked embeddings to be denoted as the final embedding of the
item in the tuple <item, item category, target category>.
We tweak this and estimate the subspace attention weights by
providing the outfit specific sample style vector from VSEN as an
additional input. This helps to learn compatibility conditional on
the style of the outfit.

There are four loss functions used in our method for learning
style specific compatibility. We have the KL divergence loss from
the VSEN network and the classification loss from the downstream
job. We also have the compatibility loss from the SCA Net which
is based on the popular triplet loss. And finally, we introduce one
more loss function to account for penalisation when the wrong
style is specified for an outfit. The overall loss for our method is
given as the weighted sum of these four individual losses.

2.1 Outfit generation
A globally optimal outfit generation task is a non-trivial task since it
is infeasible to look into all possible combinations. An approximate
solution is provided in this case. First, embeddings are created for
different target categories for an item and an associated style. Note
that we know from the previous section that embedding computa-
tion requires us to provide a style vector for every item. If there is
a reference outfit from the same style which we want to emulate,
it is trivial to generate a style vector from VSEN using that outfit.
However, in the absence of a reference outfit, there is no specific
distribution to sample from. For this we pool the mean and variance
of all outfits belonging to that specific style, and use a Gaussian
with pooled moments. This distribution can be assumed to be rep-
resentative of the style in question and enables us to generate a
style vector from it.

Once we have estimated embeddings for each item, one can
generate outfits based on the well known beam search method [21],
as is shown in Figure 2.

3 DATASET AND METRICS
We created a female outfit dataset with style annotations.
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Table 1: Distribution of compatible outfits across different
styles.

Style Work Casual Party Relax Travel Athleisure Sporty
Train 841 13062 1215 473 2128 1160 534
Val 108 1679 156 61 272 149 68
Test 251 3917 362 140 631 348 160

Figure 3: Annotation interface for curating the style of Za-
lando data. A complete outfit representing a look from the
website is provided along with individual items from the
outfit. The annotator has to assign one or more appropriate
style tags to the outfit, along with selecting the suitable gen-
der for it. One can also discard the item if there is any form
of discrepancy.

Zalando Dataset (Zal): This dataset consists of items and outfits
from the Zalando website1. In the website, outfit looks are displayed
with the option of shopping items from them. We scraped the looks
and the corresponding set of items present in each of the looks.
Since style tags are unavailable for majority of the looks, we recruit
human annotators to perform the task of annotating style tags in
outfits. We present the annotation interface in figure 3, where we
displayed an outfit look image along with the set individual items
in the look on the left and center and a list of style options on the
right. The annotator can assign one or more appropriate style tags
to each outfit. We also provided a dropdown list to select the gender
for which the outfit is primarily suitable. In case there is a mismatch
in gender of the outfit look and the associated items or any other
discrepancies, the annotator has the option to select Discard. It is
ensured that each outfit is shown only once to each annotator.

This dataset consists of items and outfits from the Zalando web-
site (https://www.zalando.co.uk/). In the website, outfit looks are
displayed with the option of shopping items from them. We merged
semantically similar fine-grained item categories, which resulted
in nine higher level categories. We scraped the looks and the cor-
responding set of items present in each of the looks. Since style
tags are unavailable for majority of the looks, we recruit human
annotators to perform the task of annotating style tags in outfits.
We present the annotation interface in figure 3, where we displayed
1https://www.zalando.co.uk/

an outfit look image along with the set individual items in the look
on the left and center and a list of style options on the right. The an-
notator can assign one or more appropriate style tags to each outfit.
We also provided a dropdown list to select the gender for which the
outfit is primarily suitable. In case there is a mismatch in gender of
the outfit look and the associated items or any other discrepancies,
the annotator has the option to select discard. Finally, there is an
option to edit the immediately previous outfit and the number of
completed annotations are shown in summary. It is ensured that
each outfit is shown only once to each annotator.

Even though an outfit can have multiple style tags, for this work
we ensure that each outfit has a single style. In the situation that an
outfit has multiple style tags from the two annotations, we choose
the one with the higher vote. Ties are broken by randomly selecting
a style. After the annotation task, it was found that some of the
styles were heavily under-represented. To mitigate this issue, we
merged certain styles that are semantically similar and discarded
some as well. For example, party and wedding were merged into
party while all outfits from classic and trendy were discarded. At
the end we had ~28K outfits.

Metrics: Two well known metrics are used to evaluate the perfor-
mance of an outfit compatibility prediction model [4, 14].
Fill-in-the-blank Accuracy (FITB Acc.): Given a set of items of
an outfit with one missing item as query, the task is to predict the
correct missing item from a list of four option items (where one
is correct and three are incorrect) based on compatibility of each
option item with the query set.
Compatibility AUROC (Compat. AUC): Given a set of positive
and negative outfit samples, this metric helps in measuring the
quality of predictions for compatible and incompatible outfits.

We constructed separate test sets for FITB and compatibility
tasks similar to [18] by creating soft negative (SN) and hard negative
(HN) samples corresponding to each positive outfit sample. In case
of SN, we sample random items from the matching higher level
categories (e.g., topwear, bottomwear, footwear, etc.), whereas for
HN, we do the sampling from matching fine-grained categories2
(e.g., t-shirts, heels, shoes, etc.). It is to be noted that HN samples
are relatively harder to differentiate from positives than SN samples.
This gradation helps in evaluating the performance of SATCOGen
at various difficulty levels. We consider five FITB and Compatibility
test datasets and report the mean performance.

4 IMPLEMENTATION DETAILS
The two modules of SATCOGen, namely VSEN and SCA Net make
use of RestNet18 as the backbone CNN architecture. We freeze all
the layers of ResNet18 except the last convolutional block, which is
connected to a new fully connected layer that outputs a 64 dimen-
sional embedding vector similar to the state-of-the-art compatibility
learning methods [12, 18].

VSEN aggregates the CNN features of all the items in an outfit
using the SAB Set Transformer [9] with a hidden dimension of 32
and two heads for mean and variance. The output of style vector

2We make use of fine-grained category information only during evaluation or testing
phase.
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Athleisure's Bottomwear Casual's BottomwearAnchor Topwear

Casual 0.2550 0.2697
Athleisure 0.2621 0.2525

Style Pre-conditioning Bottomwear 1 Bottomwear 2

Figure 4: Demonstration of how SATCOGen is able to choose
diverse style relevant bottomwears for a given parent top-
wear.

of VSEN has a dimension of 64 which is followed by two fully con-
nected MLP layers for the style classification task. Here we consider
batch size as 128 and employ the Adam optimizer [6] with an initial
learning rate of 5 × 10−6. When combining the KL-Divergence loss
with the cross entropy loss of classification, we consider 0.05 as
the weight coefficient corresponding to KL-Divergence loss. After
training the VSEN module, we freeze all of its parameters and use it
in evaluation mode to train the rest of the SATCOGen framework.
For learning the parameters of the SCA Net (five subspaces), we
use the Adam optimizer with batch size of 32 triplets, and initial
learning rate of 1 × 10−6. The Attention Network of SCA Net trans-
forms the concatenated one-hot-encoded category vectors and the
extracted style vectors from VSEN into 32 dimensions, respectively
(using a single fully connected layer), which are then forwarded to
two fully connected layers (after concatenation). Finally, the output
is the five subspace attention weights.

For outfit generation, we have optimized the inference code
using native spark implementation to get item embedding given
style and category information and to run beam search at scale on
a large scale of volume of anchor and candidate items, resulting in
20X run time reduction compared to single box implementation.
We compared the run time on 60K anchor items with 30K average
child candidates per category, 5 average categories in beam search
template and beam width of 3.

Table 2: Comparison of compatibility learning for differ-
ent methods on the Zalando dataset. We compute FITB and
Compatibility ROC AUC with both hard and soft negatives.

Method Type FITB Acc. Compat. AUC

TM SN 47.79 ± 0.07 76.73 ± 0.06
HN 43.78 ± 0.25 75.97 ± 0.08

SATCOGen SN 59.10 ± 0.34 88.58 ± 0.08
HN 55.90 ± 0.31 86.96 ± 0.06

5 RESULTS
We show the efficacy of SATCOGen in generating superior outfits
for online shopping portals by comparing its performance against
Theme Matters (TM) [8] based on FITB Acc. and Compat. AUC
scores. Table 2 presents the FITB Acc. and Compat AUC results
on SN and HN samples of Zal dataset for TM and SATCOGen (our
proposed model). SATCOGen outperforms the TM results, mainly
because of the requirement of fine-grained category information to
have improved performance. Fig. 4 shows an example of the quality
of parent-child category combinations with style pre-conditioning.

6 DEMONSTRATION INTERFACE
We have created a demonstration api to showcase the outfits gener-
ated by using SATCOGen framework given an anchor item, a style
and candidate items from other categories. The outfit templates
have been identified after discussion with fashion experts. An ex-
ample of such template would be, (’dress’, ’heels’, ’bag’, ’jewellery’).
In the api, we provide users to select a category and subsequently
an anchor item from the category for which the user wants to
view outfits under different legitimate styles. The top-5 outfits per
style are displayed for the selected anchor item. In figure-5, we are
showcasing the top-3 outfits for an anchor t-shirt given style sporty
and template ’t-shirt’, ’leggings’, ’trainer-shoes’, ’bra’. The demo-api
along with details and screenshots can be found here 3.

Figure 5: Screenshot of the Web Interface used for Demon-
stration.

7 CONCLUSION
In this paper, we presented SATCOGen - a novel outfit generation
framework based on styles and evaluated its performance on Zal - a
newly introduced outfit dataset with style tags associated with each
outfit. In general, the outfit generation process using beam search
algorithm is time consuming and not scalable for datasets having
thousands of items for each category. We ensured scalability, by
optimizing the code and making it suitable for execution on Hadoop
Clusters, which reduced the execution time drastically. Finally, we
presented a web-interface that demonstrates outfit generation start-
ing from a chosen anchor item, a pre-defined style, and a template.
In the future, we are planning to extend the outfit dataset with
ethnic outfits (specific to Indian context) and productionize the
SATCOGen framework to provide an enhanced shopping experi-
ence to the customers.

3https://github.com/Lucky-Dhakad/SATCOGen-Demo-api

https://github.com/Lucky-Dhakad/SATCOGen-Demo-api
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